FW-ECT Natural Ecto Cooler Flavor Flavor West Manufacturing, LLC. Version No: 1.1.12.10 Safety Data Sheet accordtog OSHA HazCom Standard (2012) requirements Chemwatch Hazard Alert Code: 4 Issue Date: **09/09/2021**Print Date: **09/09/2021**L.GHS.USA.EN #### **SECTION 1 Identification** | D | rad | uct | Ida | ntifie | | |---|-----|-----|------|--------|----| | М | roa | uct | ıaeı | ntitle | ١r | | Troduct Mentalies | | | |-------------------------------|-----------------------------------|--| | Product name | FW-ECT Natural Ecto Cooler Flavor | | | Synonyms | Not Available | | | Proper shipping name | Extracts, flavoring, liquid | | | Other means of identification | Not Available | | #### Recommended use of the chemical and restrictions on use #### Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | Flavor West Manufacturing, LLC. | |-------------------------|---| | Address | 29400 Hunco Way, Lake Elsinore CA 92530 United States | | Telephone | (951) 893-5120 | | Fax | (714) 276-1621 | | Website | www.FlavorWest.com_ | | Email | Flavor@FlavorWest.com | #### **Emergency phone number** | Association / Organisation | Chemwatch | CHEMWATCH EMERGENCY RESPONSE | |-----------------------------------|-----------|------------------------------| | Emergency telephone numbers | see below | +61 2 9186 1132 | | Other emergency telephone numbers | see below | +1 855-237-5573 | Once connected and if the message is not in your prefered language then please dial 01 Una vez conectado y si el mensaje no está en su idioma preferido, por favor marque 02 #### SECTION 2 Hazard(s) identification #### Classification of the substance or mixture Version No: 1.1.12.10 Page 2 of 17 Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Flammable Liquids Category 3, Serious Eye Damage/Eye Irritation Category 2A, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Aspiration Hazard Category 1 #### Label elements Hazard pictogram(s) Signal word Danger #### Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|---| | H319 | Causes serious eye irritation. | | H315 | Causes skin irritation. | | H317 | May cause an allergic skin reaction. | | H304 | May be fatal if swallowed and enters airways. | #### Hazard(s) not otherwise classified Not Applicable #### Precautionary statement(s) General | P101 | If medical advice is needed, have product container or label at hand. | | |------|---|--| | P102 | Keep out of reach of children. | | | P103 | Read label before use. | | #### Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |------|--| | P233 | Keep container tightly closed. | | P235 | Keep cool. | | P261 | Avoid breathing mist/vapours/spray. | | P240 | Ground/bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use only non-sparking tools. | | P243 | Take precautionary measures against static discharge. | | P264 | Wash all exposed external body areas thoroughly after handling. | | P272 | Contaminated work clothing must not be allowed out of the workplace. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | #### Precautionary statement(s) Response | P301+P310 | IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider. | |----------------|--| | P331 | Do NOT induce vomiting. | | P370+P378 | In case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P302+P352 | IF ON SKIN: Wash with plenty of water. | Version No: 1.1.12.10 Page 3 of 17 Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. | | |----------------|---|--| | P332+P313 | If skin irritation occurs: Get medical advice/attention. | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | #### Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|--| | P405 | Store locked up. | #### Precautionary statement(s) Disposal #### **SECTION 3 Composition / information on ingredients** #### **Substances** See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |----------|-----------|---------------------| | 64-17-5 | 20-30 | ethanol | | 102-76-1 | 10-20 | glyceryl triacetate | | 57-55-6 | 50-60 | propylene glycol | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. #### **SECTION 4 First-aid measures** | Description of | f first aic | l measures | |----------------|-------------|------------| |----------------|-------------|------------| | Eye Contact | If this product comes in contact with the eyes: Number Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|--| | Skin Contact | If skin contact occurs: If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | #### Most important symptoms and effects, both acute and delayed See Section 11 #### Indication of any immediate medical attention and special treatment needed Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours. - ▶ Polyethylene glycols are generally poorly absorbed orally and are mostly unchanged by the kidney. - P Dermal absorption can occur across damaged skin (e.g. through burns) leading to increased osmolality, anion gap metabolic acidosis, elevated calcium, low ionised calcium, CNS depression and renal failure. - ▶ Treatment consists of supportive care. Version No: 1.1.12.10 Page 4 of 17 Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** [Ellenhorn and Barceloux: Medical Toxicology] For acute or short term repeated exposures to ethanol: - Acute ingestion in non-tolerant patients usually responds to supportive care with special attention to prevention of aspiration, replacement of fluid and correction of nutritional deficiencies (magnesium, thiamine pyridoxine, Vitamins C and K). - ▶ Give 50% dextrose (50-100 ml) IV to obtunded patients following blood draw for glucose determination. - · Comatose patients should be treated with initial attention to airway, breathing, circulation and drugs of immediate importance (glucose, thiamine). - Decontamination is probably unnecessary more than 1 hour after a single observed ingestion. Cathartics and charcoal may be given but are probably not effective in single ingestions. - Fructose administration is
contra-indicated due to side effects. Propylene glycol is primarily a CNS depressant in large doses and may cause hypoglycaemia, lactic acidosis and seizures. - The usual measures are supportive care and decontamination (Ipecac/ lavage/ activated charcoal/ cathartics), within 2 hours of exposure should suffice. - Check the anion gap, arterial pH, renal function and glucose levels. Ellenhorn and Barceloux: Medical Toxicology #### **SECTION 5 Fire-fighting measures** #### **Extinguishing media** - ▶ Alcohol stable foam. - ▶ Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide. #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may #### Special protective equipment and precautions for fire-fighters #### Fire Fighting - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - ▶ Prevent, by any means available, spillage from entering drains or water course. Liquid and vapour are flammable. - Moderate fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Moderate explosion hazard when exposed to heat or flame. #### Fire/Explosion Hazard Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire. #### SECTION 6 Accidental release measures #### Personal precautions, protective equipment and emergency procedures See section 8 #### **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up | Minor | Snills | | |-------|--------|--| Environmental hazard - contain spillage. - ► Remove all ignition sources. - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - ▶ Control personal contact with the substance, by using protective equipment. #### **Major Spills** Environmental hazard - contain spillage. Version No: 1.1.12.10 Issue Date: 09/09/2021 Page 5 of 17 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** Chemical Class: alcohols and glycols For release onto land: recommended sorbents listed in order of priority. | SORBENT
TYPE | RANK | APPLICATION | COLLECTION | LIMITATIONS | |-----------------|------|-------------|------------|-------------| |-----------------|------|-------------|------------|-------------| #### LAND SPILL - SMALL | cross-linked polymer - particulate | 1 | shovel | shovel | R, W, SS | |------------------------------------|---|--------|-----------|---------------| | cross-linked polymer - pillow | 1 | throw | pitchfork | R, DGC, RT | | sorbent clay - particulate | 2 | shovel | shovel | R,I, P | | wood fiber - pillow | 3 | throw | pitchfork | R, P, DGC, RT | | treated wood fiber - pillow | 3 | throw | pitchfork | DGC, RT | | foamed glass - pillow | 4 | throw | pichfork | R, P, DGC, RT | #### LAND SPILL - MEDIUM | cross-linked polymer - particulate | 1 | blower | skiploader | R,W, SS | |------------------------------------|---|--------|------------|-----------------| | polypropylene - particulate | 2 | blower | skiploader | W, SS, DGC | | sorbent clay - particulate | 2 | blower | skiploader | R, I, W, P, DGC | | polypropylene - mat | 3 | throw | skiploader | DGC, RT | | expanded mineral - particulate | 3 | blower | skiploader | R, I, W, P, DGC | | polyurethane - mat | 4 | throw | skiploader | DGC, RT | #### Legend DGC: Not effective where ground cover is dense R; Not reusable I: Not incinerable P: Effectiveness reduced when rainv RT:Not effective where terrain is rugged SS: Not for use within environmentally sensitive sites W: Effectiveness reduced when windy Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control; R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988 - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - ▶ May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 Handling and storage** ## Precautions for safe handling #### ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. - ▶ Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT allow clothing wet with material to stay in contact with skin ### Other information Safe handling Consider storage under inert gas. - ▶ Store in original containers in approved flammable liquid storage area. - ▶ Store away from incompatible materials in a cool, dry, well-ventilated area. - DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. #### Conditions for safe storage, including any incompatibilities #### Suitable container - ▶ Packing as supplied by manufacturer. - ▶ Plastic containers may only be used if approved for flammable liquid. - Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) Version No: 1.1.12.10 Page 6 of 17 Issue Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** Print Date: 09/09/2021 - ▶ For manufactured product having a viscosity of at least 250 cSt. - Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates. - Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water. #### Alcohols - re incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents. - reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen - react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, ethylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium - ▶ should not be heated above 49 deg. C. when in contact with aluminium equipment #### **SECTION 8 Exposure controls / personal protection** #### **Control parameters** #### Occupational Exposure Limits (OEL) Storage incompatibility #### **INGREDIENT DATA** | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |--|------------|-------------------------|-----------------------|---------------|---------------|---------------| | US OSHA Permissible
Exposure Limits (PELs)
Table Z-1 | ethanol | Ethyl alcohol (Ethanol) | 1000 ppm / 1900 mg/m3 | Not Available | Not Available | Not Available | | US NIOSH Recommended Exposure Limits (RELs) | ethanol | Ethyl alcohol | 1000 ppm / 1900 mg/m3 | Not Available | Not Available | Not Available | | US ACGIH Threshold Limit
Values (TLV) | ethanol | Ethanol | Not Available | 1000 ppm | Not Available | А3 | #### **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |---------------------|---------------|---------------|-------------| | ethanol | Not Available | Not Available | 15000* ppm | | glyceryl triacetate | 19 mg/m3 | 210 mg/m3 | 1,200 mg/m3 | | propylene glycol | 30 mg/m3 | 330 mg/m3 | 2,000 mg/m3 | | propylene glycol | 30 mg/m3 | 1,300 mg/m3 | 7,900 mg/m3 | | Ingredient | Original IDLH | Revised IDLH | |---------------------|---------------|---------------| | ethanol | 3,300 ppm | Not Available | | glyceryl triacetate | Not Available | Not Available | | propylene glycol | Not Available | Not Available | #### Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |---------------------|--|----------------------------------|--| | glyceryl triacetate | Е | ≤ 0.1 ppm | | | propylene glycol | E | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | #### MATERIAL DATA For ethanol: Odour Threshold Value: 49-716 ppm (detection), 101 ppm (recognition) Eye and respiratory tract irritation do not appear to occur at exposure levels of less than 5000 ppm and the TLV-TWA is thought to provide an adequate margin of safety against such effects. Experiments in man
show that inhalation of 1000 ppm caused slight symptoms of poisoning and 5000 ppm caused strong stupor and morbid sleepiness. Subjects exposed to 5000 ppm to 10000 ppm experienced smarting of the eyes and nose and coughing. Symptoms disappeared within minutes. for propylene glycol: Saturated vapour concentration @ 20 deg C.= 65.8 ppm, 204.6 mg/m3; i.e higher concentrations can only occur as aerosols or at higher temperatures. Odour Threshold: Practically odourless. A small number of individuals show skin irritation or sensitisation from repeated or prolonged exposure to propylene glycol. A workplace environmental exposure limit (WEEL) has been established by AIHA and is thought to be protective against systemic effects. Version No: 1.1.12.10 Page **7** of **17** Issue Date: **09/09/2021** #### **FW-ECT Natural Ecto Cooler Flavor** Print Date: 09/09/2021 #### **Exposure controls** ## Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. #### Personal protection #### Eye and face protection - Safety glasses with side shields. - Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. #### Skin protection #### See Hand protection below - Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: ### Hands/feet protection - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. #### **Body protection** Other protection #### See Other protection below - Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area. [AS/NZS ISO 6529:2006 or national equivalent] - Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted. [AS/NZS 1715 or national equivalent] - Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely. - Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. - Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood. - Overalls. - ► PVC Apron. - ▶ PVC protective suit may be required if exposure severe. - ► Eyewash unit. - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - ▶ For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. #### Recommended material(s) #### **GLOVE SELECTION INDEX** Glove selection is based on a modified presentation of the: "Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: FW-ECT Natural Ecto Cooler Flavor #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter. Version No: 1.1.12.10 Page 8 of 17 Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** | Material | СРІ | |------------------|-----| | PE/EVAL/PE | A | | BUTYL | С | | NATURAL RUBBER | С | | NATURAL+NEOPRENE | С | | NEOPRENE | С | | NITRILE | С | | NITRILE+PVC | С | | PVC | С | ^{*} CPI - Chemwatch Performance Index NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. - * Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted. | Required Minimum
Protection Factor | Half-Face
Respirator | Full-Face
Respirator | Powered Air
Respirator | |---------------------------------------|-------------------------|-------------------------|---------------------------| | up to 5 x ES | Air-line* | A-2 | A-PAPR-2 ^ | | up to 10 x ES | - | A-3 | - | | 10+ x ES | - | Air-line** | - | ^{* -} Continuous Flow; ** - Continuous-flow or positive pressure demand ^ - Full-face A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boilingpoint organic compounds(below 65 degC) - ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - ▶ The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - ► Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time #### **SECTION 9 Physical and chemical properties** #### Information on basic physical and chemical properties | Appearance | Yellow to orange | | | |--|------------------|---|-----------------------| | | | | | | Physical state | Liquid | Relative density (Water = 1) | 0.97 | | Odour | Characteristic | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | 28.8 | Taste | Cool tangerine orange | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Flammable. | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Miscible | pH as a solution (%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** See section 7 A: Best Selection B: Satisfactory; may degrade after 4 hours continuous immersion C:
Poor to Dangerous Choice for other than short term immersion Version No: 1.1.12.10 Page 9 of 17 Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | |------------------------------------|--|--| | Possibility of hazardous reactions | See section 7 | | | Conditions to avoid | See section 7 | | | Incompatible materials | See section 7 | | | Hazardous decomposition products | See section 5 | | #### **SECTION 11 Toxicological information** #### Information on toxicological effects Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving narcosis. The narcotic dose for rats, after 2 hours of exposure, is 19260 ppm. #### Inhaled Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency. respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. The material has NOT been classified by EC Directives or other classification systems as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should be taken nevertheless to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapours, fumes and aerosols. Inhalation hazard is increased at higher temperatures. Fine mists generated from plant/ vegetable (or more rarely from animal) oils may be hazardous. Extreme heating for prolonged periods, at high temperatures, may generate breakdown products which include acrolein and acrolein-like substances. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result. Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish coloured skin (cyanosis). Ingestion of ethanol may produce nausea, vomiting, gastrointestinal bleeding, abdominal pain and diarrhoea. Systemic effects: | Blood concentration: | Effects: | |----------------------|---| | <1.5 g/l | Mild: Impaired visual acuity, coordination and reaction time, emotional lability | | 1.5-3.0 g/l | Moderate: Slurred speech, confusion, ataxia, emotional lability, perceptual and sensation disturbances possible blackout spells, and incoordination with impaired objective performance in standardised tests. Possible diplopia, flushing, tachycardia, sweating and incontinence. Bradypnoea may occur early and tachypnoea may develop in cases of metabollic acidosis, hypoglycaemia and hypokalaemia. | #### Ingestion Ingestion of propylene glycol produced reversible central nervous system depression in humans following ingestion of 60 ml. Symptoms included increased heart-rate (tachycardia), excessive sweating (diaphoresis) and grand mal seizures in a 15 month child who ingested large doses (7.5 ml/day for 8 days) as an ingredient of vitamin preparation. Excessive repeated ingestions may cause hypoglycaemia (low levels of glucose in the blood stream) among susceptible individuals; this may result in muscular weakness, incoordination and mental confusion. Very high doses given during feeding studies to rats and dogs produce central nervous system depression (although one-third of that produced by ethanol), haemolysis and insignificant kidney changes. The toxic effects of glycols (dihydric alcohols), following ingestion are similar to those of alcohol, with depression of the central nervous system (CNS), nausea, vomiting and degenerative changes in liver and kidney, Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delirium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory arrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Version No: 1.1.12.10 Page 10 of 17 Issue Date: 09/09/2021 FW-ECT Natural Ecto Cooler Flavor Print Date: 09/09/2021 The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Accidental ingestion of the material may be damaging to the health of the individual. The material may accentuate any pre-existing dermatitis condition Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. A single prolonged exposure is not likely to result in the material being absorbed in harmful amounts. However the material may be absorbed in potentially harmful amounts when applied in large quantities to severe burns (second or third degree) over large areas of the body as part of a cream, other topical application or by prolonged contact with clothing accidentally wetted by the material. Absorption under such circumstances can elevated serum osmolality and may result in osmotic shock. Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. #### **Skin Contact** Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either - produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or - produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. #### Eve Direct contact of the eye with ethanol may cause immediate stinging and burning with reflex closure of the lid and tearing, transient injury of the corneal epithelium and hyperaemia of the conjunctiva. Foreign-body type discomfort may persist for up to 2 days but healing is usually spontaneous and complete. Irritation of the eyes may produce a heavy secretion of tears (lachrymation). Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may Long-term exposure to respiratory irritants may result in disease of the
airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyper-responsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. On the basis of epidemiological data, the material is regarded as carcinogenic to humans. There is sufficient data to establish a causal association between human exposure to the material and the development of cancer. Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. #### Chronic There is sufficient evidence to establish a causal relationship between human exposure to the material and impaired fertility Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by other agents. Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively described as foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size. Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals Glyceryl triesters (triglycerides), following ingestion, are metabolised to monoglycerides, free fatty acids and glycerol, all of which are absorbed in the intestinal mucosa and undergo further metabolism. Medium chain triglycerides (C8-C10) appear to have relatively rapid metabolism and elimination from blood and tissues compared to long chain triglycerides (C16-C18). Little or no acute, subchronic or chronic oral toxicity was seen in animal studies unless levels approached a significant percentage of calorific intake. Subcutaneous injections of tricaprylin in rats over a five-week period caused granulomatous reaction characterised by oil deposits surrounded by macrophages. #### FW-ECT Natural Ecto Cooler Flavor | TOXICITY | IRRITATION | |---------------|---------------| | Not Available | Not Available | Version No: 1.1.12.10 Page 11 of 17 Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** | | TOXICITY | IRRITATION | |---------------------|---|--| | | Dermal (rabbit) LD50: 17100 mg/kg ^[1] | Eye (rabbit): 500 mg SEVERE | | | Inhalation(Mouse) LC50; 39 mg/l4h ^[2] | Eye (rabbit):100mg/24hr-moderate | | ethanol | Oral(Rat) LD50; >7692 mg/kg ^[1] | Eye: adverse effect observed (irritating) ^[1] | | | | Skin (rabbit):20 mg/24hr-moderate | | | | Skin (rabbit):400 mg (open)-mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Not Available | | glyceryl triacetate | Inhalation(Rat) LC50; >1.721 mg/l4h ^[1] | | | | Oral(Rat) LD50; >2000 mg/kg ^[2] | | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >2000 mg/kg ^[1] | Eye (rabbit): 100 mg - mild | | | Inhalation(Rat) LC50; >44.9 mg/L4h ^[2] | Eye (rabbit): 500 mg/24h - mild | | propylene glycol | Oral(Rat) LD50; >10400 mg/kg ^[2] | Eye: no adverse effect observed (not irritating) ^[1] | | | | Skin(human):104 mg/3d Intermit Mod | | | | Skin(human):500 mg/7days mild | | | | Skin: no adverse effect observed (not irritating) ^[1] | | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. #### **FW-ECT Natural Ecto** Cooler Flavor Carboxylic acid esters will undergo enzymatic hydrolysis by ubiquitously expressed GI esterases. The rate of hydrolysis is dependant on the structure of the ester, and may therefore be rapid or rather slow. Thus, due to hydrolysis, predictions on oral absorption based on the physico-chemical characteristics of the intact parent substance alone may no longer apply. When considering the hydrolysis product glycerol, absorption is favoured based on passive and active absorption of glycerol. The Cosmetic Ingredient Review (CIR) Expert Panel has issued three final reports on the safety of 25 triglycerides, i.e., fatty acid triesters of alycerin High purity is needed for the triglycerides. Previously the Panel published a final report on a diglycerides, and concluded that the ingredients in the diglyceride family are safe in the present practices of use and concentration provided the content of 1,2-diesters is not high enough to induce epidermal hyperplasia. The Panel discussed that there was an increased level of concern because of data regarding the induction of protein kinase C (PKC) and the tumor promotion potential of 1,2-diacylglycerols. The Panel noted that, nominally, glyceryl-1,3-diesters contain 1,2-diesters, raising the concern that 1.2-diesters could potentially induce hyperplasia. For Group E aliphatic esters (polyol esters): According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group E substances are esters of monoacids, mainly common fatty acids, and trihydroxy or polyhydroxyalcohols or polyols, such as pentaerythritol (PE), 2-ethyl-2-(hydroxymethyl)- 1,3-propanediol or trimethylolpropane (TMP), and dipentaerythritol (diPE). The Group E substances often are referred to as "polyol esters" The polyol esters are unique in their chemical characteristics since they lack beta-tertiary hydrogen atoms, thus leading to stability against oxidation and elimination. The fatty acids often range from C5-C10 to as high as C18 (e.g., oleic, stearic, isostearic, tall oil fatty acids) in carbon number and generally are derived from naturally occurring sources. Group E esters may have multiple ester linkages and may include mixed esters derived from different carbonlength fatty acid mixtures. #### **FW-ECT Natural Ecto** Cooler Flavor & PROPYLENE GLYCOL The acute oral toxicity of propylene glycol is very low, and large quantities are required to cause perceptible health damage in humans. Serious toxicity generally occurs only at plasma concentrations over 1 g/L, which requires extremely high intake over a relatively short period of time. It would be nearly impossible to reach toxic levels by consuming foods or supplements, which Version No: 1.1.12.10 Page 12 of 17 Issue Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** Print Date: 09/09/2021 #### **ETHANOL & PROPYLENE GLYCOL** contain at most 1 g/kg of PG. Cases of propylene glycol poisoning are usually related to either inappropriate intravenous administration or accidental ingestion of large quantities by children. The potential for long-term oral toxicity is also low. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------
--------------------------|----------| | Skin Irritation/Corrosion | <u>~</u> | Reproductivity | × | | | ¥ | rtoproductivity | | | Serious Eye
Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | ✓ | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | ~ | Legend: X - Data either not available or does not fill the criteria for classification Data available to make classification #### **SECTION 12 Ecological information** #### **Toxicity** | FW-ECT Natural Ecto | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------------|------------------|------------------------------------|--|-----------------------|----------------| | Cooler Flavor | Not
Available | Not Available | Not Available | Not
Available | Not
Availab | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50(ECx) | 96h | Algae or other aquatic plants | <0.001mg/L | 4 | | ath an al | EC50 | 72h | Algae or other aquatic plants | 275mg/l | 2 | | ethanol | LC50 | 96h | Fish | >100mg/l | 2 | | | EC50 | 48h | Crustacea | >79mg/L | 4 | | | EC50 | 96h | Algae or other aquatic plants | <0.001mg/L | 4 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 72h | Algae or other aquatic plants | >940mg/l | 2 | | glyceryl triacetate | EC50 | 48h | Crustacea | 380mg/l | 1 | | | LC50 | 96h | Fish | >100mg/l | 2 | | | EC0(ECx) | 48h | Crustacea | 65mg/l | 1 | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | NOEC(ECx) | 336h | Algae or other aquatic plants | <5300mg/l | 1 | | | EC50 | 72h | Algae or other aquatic plants | 19300mg/l | 2 | | propylene glycol | LC50 | 96h | Fish | >10000mg/l | 2 | | | EC50 | 48h | Crustacea | >114.4mg/L | 4 | | | EC50 | 96h | Algae or other aquatic plants | 19000mg/l | 2 | | Legend: | 3. EPIWIN Su | ite V3.12 (QSAR) - Aquatic Toxicit | e ECHA Registered Substances - Ecotoxicologic
y Data (Estimated) 4. US EPA, Ecotox database
IITE (Japan) - Bioconcentration Data 7. METI (J. | - Aquatic Toxicity Da | ata 5. | #### Harmful to aquatic organisms. On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems. When ethanol is released into the soil it readily and quickly biodegrades but may leach into ground water; most is lost by evaporation. When released into water the material readily evaporates and is biodegradable. Ethanol does not bioaccumulate to an appreciable extent. The material is readily degraded by reaction with photochemically produced hydroxy radicals; release into air will result in photodegradation and wet deposition. For aliphatic fatty acids and alcohols: Environmental fate: Saturated fatty acids are very stable in air, whereas unsaturated (C=C bonds) fatty acids are susceptible to oxidation. Unsaturation increases the rate of metabolism although the degree of unsaturation and positioning of double bonds is not highly significant. The available data indicate all fatty acid salt chain lengths up to and including C18 can be metabolised under aerobic conditions and can be considered to be readily biodegradable Version No: 1.1.12.10 Page 13 of 17 Issue Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** Print Date: 09/09/2021 All tests showed that fatty acids and lipids are readily biodegradable The aliphatic acids are of similar very weak acid strength (approximately pKa 5), i.e., partially dissociate in aqueous solution; the salts of the aliphatic acids are highly dissociated in water solution such that the anion is the same for homologous salts and acids. Slight (although inconsistent) effects on the trend for decreasing vapour pressure are also are also observed with the mono-, di-and tri-unsaturated substances as compared to the corresponding saturated substances. Propylene glycol is known to exert high levels of biochemical oxygen demand (BOD) during degradation in surface waters. This process can adversely affect aquatic life by consuming oxygen needed by aquatic organisms for survival. Large quantities of dissolved oxygen (DO) in the water column are consumed when microbial populations decompose propylene glycol. Sufficient dissolved oxygen levels in surface waters are critical for the survival of fish, macro-invertebrates, and other aquatic organisms. DO NOT discharge into sewer or waterways. #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------|-----------------------------|-----------------------------| | ethanol | LOW (Half-life = 2.17 days) | LOW (Half-life = 5.08 days) | | glyceryl triacetate | LOW | LOW | | propylene glycol | LOW | LOW | #### Bioaccumulative potential | Ingredient | Bioaccumulation | | |---------------------|----------------------|--| | ethanol | LOW (LogKOW = -0.31) | | | glyceryl triacetate | LOW (BCF = 1.3) | | | propylene glycol | LOW (BCF = 1) | | #### Mobility in soil | Ingredient | Mobility | | |---------------------|-------------------|--| | ethanol | HIGH (KOC = 1) | | | glyceryl triacetate | LOW (KOC = 48.06) | | | propylene glycol | HIGH (KOC = 1) | | #### **SECTION 13 Disposal considerations** #### Waste treatment methods **Product / Packaging** disposal - Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. #### Otherwise - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ► Reduction - ► Reuse - ▶ Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. #### **SECTION 14 Transport information** #### **Labels Required** Version No: 1.1.12.10 Page **14** of **17** Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** ### Land transport (DOT) | UN number | 1197 | | | | |------------------------------|--|-----------------------------|--|--| | UN proper shipping name | Extracts, flavoring, liqu | Extracts, flavoring, liquid | | | | Transport hazard class(es) | Class 3 Subrisk Not Applicable | | | | | Packing group | III | | | | | Environmental hazard | Not Applicable | | | | | Special precautions for user | Hazard Label 3 Special provisions B1, IB3, T2, TP1 | | | | #### Air transport (ICAO-IATA / DGR) | UN number | 1197 | | | |------------------------------|---|----------------|-------| | UN proper shipping name | Extracts, flavouring, liquid | | | | Transport hazard class(es) | ICAO/IATA Class | 3 | | | | ICAO / IATA Subrisk | Not Applicable | | | | ERG Code 3L | | | | Packing group | III | | | | Environmental hazard | Not Applicable | | | | Special precautions for user | Special provisions | | A3 | | | Cargo Only Packing Instructions | | 366 | | | Cargo Only Maximum Qty / Pack | | 220 L | | | Passenger and Cargo Packing Instructions | | 355 | | | Passenger and Cargo Maximum Qty / Pack | | 60 L | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | Passenger and Cargo Limited Maximum Qty / Pack | | 10 L | ### Sea transport (IMDG-Code / GGVSee) | | l . | | |------------------------------|--|-----------------------------| | UN number | 1197 | | | UN proper shipping name | EXTRACTS, FLAVOURING, LIQUID | | | Transport hazard class(es) | IMDG Class 3 IMDG Subrisk N | lot Applicable | | Packing group | III | | | Environmental hazard | Not Applicable | | | Special precautions for user | EMS Number Special provisions Limited Quantities | F-E , S-D
223 955
5 L | #### Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |--------------|---------------| | ethanol | Not Available | Version No: 1.1.12.10 Page 15 of 17 Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** | Product name | Group | |---------------------|---------------| | glyceryl triacetate | Not Available | | propylene glycol | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |---------------------|---------------| |
ethanol | Not Available | | glyceryl triacetate | Not Available | | propylene glycol | Not Available | #### **SECTION 15 Regulatory information** #### Safety, health and environmental regulations / legislation specific for the substance or mixture | ethanol is found on the following regulatory lists | |--| |--| US - Massachusetts - Right To Know Listed Chemicals US ACGIH Threshold Limit Values (TLV) US ACGIH Threshold Limit Values (TLV) - Carcinogens US DOE Temporary Emergency Exposure Limits (TEELs) US NIOSH Recommended Exposure Limits (RELs) US OSHA Permissible Exposure Limits (PELs) Table Z-1 US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US TSCA Chemical Substance Inventory - Interim List of Active Substances #### glyceryl triacetate is found on the following regulatory lists US DOE Temporary Emergency Exposure Limits (TEELs) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US TSCA Chemical Substance Inventory - Interim List of Active Substances #### propylene glycol is found on the following regulatory lists US AIHA Workplace Environmental Exposure Levels (WEELs) US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs) US DOE Temporary Emergency Exposure Limits (TEELs) US EPA Integrated Risk Information System (IRIS) US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory US Toxicology Excellence for Risk Assessment (TERA) Workplace Environmental Exposure Levels (WEEL) US TSCA Chemical Substance Inventory - Interim List of Active Substances ### **Federal Regulations** #### Superfund Amendments and Reauthorization Act of 1986 (SARA) #### Section 311/312 hazard categories | Flammable (Gases, Aerosols, Liquids, or Solids) | Yes | |--|-----| | Gas under pressure | No | | Explosive | No | | Self-heating | No | | Pyrophoric (Liquid or Solid) | No | | Pyrophoric Gas | No | | Corrosive to metal | No | | Oxidizer (Liquid, Solid or Gas) | No | | Organic Peroxide | No | | Self-reactive | No | | In contact with water emits flammable gas | No | | Combustible Dust | No | | Carcinogenicity | No | | Acute toxicity (any route of exposure) | No | | Reproductive toxicity | No | | Skin Corrosion or Irritation | Yes | | Respiratory or Skin Sensitization | Yes | | Serious eye damage or eye irritation | Yes | | Specific target organ toxicity (single or repeated exposure) | No | | Aspiration Hazard | Yes | | Germ cell mutagenicity | No | Version No: 1.1.12.10 Page **16** of **17** Issue Date: 09/09/2021 Print Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** No Simple Asphyxiant #### US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4) None Reported #### **State Regulations** **US. California Proposition 65** Hazards Not Otherwise Classified None Reported #### **National Inventory Status** | National Inventory | Status | | |--|---|--| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | | Canada - DSL | Yes | | | Canada - NDSL | No (ethanol; glyceryl triacetate; propylene glycol) | | | China - IECSC | Yes | | | Europe - EINEC / ELINCS /
NLP | Yes | | | Japan - ENCS | Yes | | | Korea - KECI | Yes | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | Yes | | | USA - TSCA | Yes | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | Yes | | | Vietnam - NCI | Yes | | | Russia - FBEPH | Yes | | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | | ### **SECTION 16 Other information** | Revision Date | 09/09/2021 | |---------------|------------| | Initial Date | 09/10/2021 | #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value No Version No: 1.1.12.10 Page 17 of 17 Issue Date: 09/09/2021 #### **FW-ECT Natural Ecto Cooler Flavor** Print Date: 09/09/2021 BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers **ENCS: Existing and New Chemical Substances Inventory** KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Powered by AuthorITe, from Chemwatch.